Structural analysis of oligopoly market based on the reflective game model by the example of telecommunication market in Russia
https://doi.org/10.21202/1993-047X.11.2017.4.66-81
EDN: ZVYXSX
Abstract
Objective: to analyze the possible structures of the oligopoly market distribution by the example of telecommunication industry in terms of the agents’ reflexive behavior.Methods: game theory, economic-mathematical modeling.Results: the article states that one of the first objects in the game theory is an oligopoly market. Based on the analysis of game theory studies, it was found that there is a need to achieve information equilibrium in reflexive games of three agents in the oligopoly market. To solve this problem, we analyzed all possible representations of the agents, leading to the set of games in the Russian telecommunications market for three agents: OJSC “MTS”, OJSC “Megafon” and OJSC “Vympelcom”. Three reflection grades were studied: 1) representations of the agent about other agents, 2) representations of the agent’s perception of other agents about it and 3) representations of the agent about what its competitors think about the first agent’s opinion about the other two. As a result, the general patterns were revealed of the expressions of conjectural variations in each case; it was proved that further detailing of the reflection is not needed.As a result of calculations, the models of informational equilibriums of the Russian telecommunication market were constructed; for that, the averaged values of the demand and cost functions parameters functions of cellular communication operators were taken. It was also revealed that in 2015 the actual telecommunication market in the Russian Federation qualitatively, i.e. by the ratio of market shares, was close to equilibrium on condition of first rank reflexive behavior for the case when the market leader, OJSC “MTS”, represents its counterparties - OJSC “Megafon” and OJSC “Vympelcom” - as the driven agents. Scientific novelty: the analytical expressions for the information equilibrium parameters (issues and profits of the agents, aggregate output and prices) are obtained in the oligopoly market with a linear demand function, linear cost functions of agents with equal marginal and fixed costs, for arbitrary reflection grades.Practical significance: the obtained set of informational equilibriums may be used to compare it to the actual equilibriums of the Russian telecommunications market to assess the reflection grades of its agents.
About the Authors
I. A. BiryukovaRussian Federation
M. I. Geras’kin
Russian Federation
References
1. Блинова Т. В., Митрофанов А. Ю., Русановский А. В. Прогнозирование развития сектора услуг в структуре российской экономики // Вестник Томского государственного университета. 2008. № 9 (65). С. 336-344.
2. Mas-Collel A., Whinston M., Green J. Microeconomic Theory. N. Y.: Oxford Univ. Press, 1995. 618 p.
3. Гераськин М. И. Проблемы определения рефлексивных равновесий на рынке олигополии // Вестник Самарского государственного экономического университета. 2017. № 1 (147). С. 17-25.
4. Nash J. Non-cooperative Games // Annals of Mathematics. 1951. Vol. 54. Pp. 286-295.
5. Naimzada A. K., Sbragia L. Oligopoly games with nonlinear demand and cost functions: Two boundedly rational adjustment processes // Chaos, Solitons and Fractals. 2006. Vol. 29 (3). Pp. 707-722.
6. Новиков Д. А. Стратегическая рефлексия в биматричных играх // Региональная экономика в информационном измерении: модели, оценки, прогнозы. Сборник научных трудов / под ред. Е. Ю. Иванова, Р. М. Нижегородцева. М.: Бизнес-Юнитек, 2003. С. 296-307.
7. Новиков Д. А., Чхартишвили А. Г. Рефлексивные игры. М.: СИНТЕГ, 2003. 160 с.
8. Cournot A. A. Researches into the Mathematical Principles of the Theory of Wealth. London: Hafner, 1960 (Original 1838).
9. Vasin A. Game-theoretic study of electricity market mechanisms // Procedia Computer Science. 2014. Vol. 31. Рp. 124-132.
10. Colacicco R. Ten years of general oligopolistic equilibrium: A survey // Journal of Economic Surveys. 2015. Vol. 29 (5). Pp. 965-992.
11. Ino H., Matsumura T. Welfare-Improving Effect of a Small Number of Followers in a Stackelberg Model // B. E. Journal of Theoretical Economics. 2016. Vol. 16 (1). Pp. 243-265.
12. Sherali H. D. Multiple leader Stackelberg model and analysis // Operations Research. 1984. Vol. 32 (2). Pp. 390-404.
13. Гераськин М. И., Чхартишвили А. Г. Теоретико-игровые модели рынка олигополии с нелинейными функциями издержек агентов // Автоматика и телемеханика. 2017. № 9. C. 106-130.
14. Karmarkar U. S., Rajaram K. Aggregate production planning for process industries under oligopolistic competition // European Journal of Operational Research. 2012. Vol. 223 (3). Pp. 680-689.
15. Ledvina A., Sigar R. Oligopoly games under asymmetric costs and an application to energy production // Mathematics and Financial Economics. 2012. Vol. 6(4). Pp. 261-293.
16. Currarini S., Marini M. A. Sequential play and cartel stability in Сournot oligopoly // Applied Mathematical Sciences. 2013. Vol. 7 (1-4). Рp. 197-200.
17. Askar S., Alnowibet K. Nonlinear oligopolistic game with isoelastic demand function: Rationality and local monopolistic approximation // Chaos, Solitons and Fractals. 2016. Vol. 84. Pp. 15-22.
18. Naimzada A., Tramontana F. Two different routes to complex dynamics in an heterogeneous triopoly game // Journal of Difference Equations and Applications. 2015. Vol. 21 (7). Pp. 553-563.
19. Cavalli F., Naimzada A., Tramontana F. Nonlinear dynamics and global analysis of a heterogeneous Cournot duopoly with a local monopolistic approach versus a gradient rule with endogenous reactivity // Communications in Nonlinear Science and Numerical Simulation. 2015. Vol. 23 (1-3). Pp. 245-262.
20. Geraskin M. I., Chkhartishvili A. G. Structural modeling of oligopoly market under the nonlinear functions of demand and agents’ costs // Automation and Remote Control. 2017. Vol. 78, Is. 2. Pp. 332-348.
21. Novikov D. A., Chkhartishvili A. G. Mathematical Models of Informational and Strategic Reflexion: a Survey // Advances in Systems Science and Applications. 2014. Vol. 3. Pp. 254-277.
22. Geraskin M. I., Chkhartishvili A. G. Structural modeling of oligopoly market under the nonlinear functions of demand and agents’ costs // Automation and Remote Control. 2017. Vol. 78 (2). Pp. 332-348.
23. Chkhartishvili A. G., Korepanov V. O. Adding Informational Beliefs to the Players Strategic Thinking Model // IFAC- PapersOnLine. 2016. Vol. 49 (32). Pp. 19-23.
24. Liu Y., Gao L., Guan J. Marketing strategy of price competition and product differentiation in duopoly enterprises with asymmetric information // International Conference on Services Systems and Services Management, Proceedings of ICSSSM'05. 2005. Vol. 1. (1499557). Рp. 665-668.
25. Gilpatric S. M., Li Y. Information value under demand uncertainty and endogenous market leadership // Economic Inquiry. 2015. Vol. 53 (1). Рp. 589-603.
26. Geraskin M. Game-theoretic analysis of Stackelberg oligopoly with arbitrary rank reflexive behavior of agents // Kybernetes, 2017. Vol. 46. Is. 6. DOI: 10.1108/K-12-2016-0351
27. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1973. 832 с.
28. Юдина С. В., Гераськин М. И. Научный семинар студентов и аспирантов Института экономики и управления «Анализ рефлексивной игры трех агентов в линейной модели олигополии». Самара, 2017.
Review
For citations:
Biryukova I.A., Geras’kin M.I. Structural analysis of oligopoly market based on the reflective game model by the example of telecommunication market in Russia. Actual Problems of Economics and Law. 2017;11(4):66-81. (In Russ.) https://doi.org/10.21202/1993-047X.11.2017.4.66-81. EDN: ZVYXSX