Preview

Russian Journal of Economics and Law

Advanced search

Modeling of competitive interactions: basic regularities. Part 2.

https://doi.org/10.21202/2782-2923.2023.2.253-268

EDN: DSFPFX

Abstract

Objective: to analyze the general patterns of political dynamics (primarily in interstate relations) caused by the presence of competition between the key political actors.

Methods: methods of mathematical dynamic modeling are used to study competitive interactions.

Results: the work is the second part of the article devoted to the analysis of general patterns of socio-economic and political dynamics. This part of the study analyzes the issues of competition of social systems, general features of competitive interactions based on the study of the basic mathematical model describing competition in socio-economic and political spheres. It has been shown that the basic mathematical model of competition allows describing the features of geopolitical dynamics both in terms of competition and in terms of partnership.

Scientific novelty: the results of analysis and mathematical modeling allow identifying the patterns of geopolitical dynamics and determining the conditions under which the implementation of various options for global development is possible.

Practical significance: comprehension of the conditions of transition from one mode of geopolitical interaction to another increases the validity of the geopolitical dynamics forecast.

About the Author

S. Yu. Malkov
Lomonosov Moscow State University
Russian Federation

Sergey Yu. Malkov, Doctor of Engineering, Professor

Researcher ID: http://www.researcherid.com/rid/L-5734-2015 eLIBRARY ID: AuthorID: 16491

Moscow



References

1. Malkov, S. Yu. (2023). Modeling of competitive interactions: basic regularities. Part 1. Russian Journal of Economics and Law, 17(1), 35–50. (In Russ.). https://doi.org/10.21202/2782-2923.2023.1.35-50

2. Andronov, A. A., & Pontryagin, L. S. (1937). Robust systems. Reports of the USSR Academy of Sciences, 14(5), 247–250. (In Russ.).

3. Gumilev, L. N. (2001). Ethnogenesis and biosphere of the Earth. Saint Petersburg: Kristall. (In Russ.).

4. Klimenko, V. V. (2009). Climate: unread chapter of history. Moscow: Izdatel'skii dom MEI. (In Russ.).

5. Borisenkov, E. P., & Pasetskii, V. M. (1988). Millennial chronicle of extraordinary natural phenomena. Moscow: Mysl. (In Russ.).

6. Karlin, L. N., & Samusevich, I. N. (2010). Global climate, history and culture. Obshchestvo. Sreda. Razvitie (Terra Humana), 1(14), 130–138. (In Russ.).

7. Malkov, S. Yu. (2009). Social self-organization and historical process: Capabilities of mathematical modeling. Moscow: Knizhnyi dom “Librokom”. (In Russ.).

8. Malkov, S. Yu., & Markova, A. A. (2010). Impact of climate changes on the global demographic dynamics: statistical analysis of empirical data. In S. Yu. Malkov, A. V. Korotaev (Eds.), History and synergetics: Mathematical models of social, economic and cultural dynamics (2d Ed., pp. 49–75). Мoscow: KomKniga. (In Russ.).

9. Chernavskii, D. S. (2004). Synergetics and information (dynamic theory of information) (2d Ed.). Мoscow: Editorial URSS. (In Russ.).

10. Chernavskii, D. S., Chernavskaya, N. M., Malkov, S. Yu., & Malkov, A. S. (2002). Mathematic modeling of geopolitical processes. Strategicheskaya stabilnost, 1, 60–66. (In Russ.).

11. Chernavskii, D. S., Chernavskaya, N. M., Malkov, A. S., & Malkov, S. Yu. (2005). Struggle of conditional informations. In History and synergetics: Mathematic modeling of social dynamics (pp. 88–102). Moscow: KomKniga. (In Russ.).

12. Chernavskii, D. S., Chernavskaya, N. M., Malkov, A. S., & Malkov, S. Yu. (2005). Geopolitical processes as the object of mathematic modeling. In History and synergetics: Mathematic modeling of social dynamics (pp. 103–116). Moscow: KomKniga. (In Russ.).

13. Chernavskii, D. S., Chernavskaya, N. M., Malkov, S. Yu., Malinetskii, G. G., & Malkov, A. S. (2006). Struggle of conditional informations. Informatsionnye Voiny, 1, 3–14. (In Russ.).

14. Akaev, A. A., & Malkov, S. Yu. (2009). Geopolitical dynamics: capabilities of logical-mathematic modeling. Geopolitics and Security, 4(8), 39–55. (In Russ.).

15. Sadovnichii, V. A., Akaev, A. A., Ilyin, I. V., Aleshkovskii, I. A., Andreev, A. I., Bilyuga, S. E., Grinin, A. L., Grinin, L. E., Davydova, O. I., Kovaleva, N. O., Korotaev, A. V., Malkov, S. Yu., & Musieva, D. M. (2023). Beyond the limits. Basic provisions of the report to the Club of Rome. Moscow: Izdatel'stvo Moskovskogo universiteta.

16. Ilyin, I. V. (2021). Fundamentals of globalistics: tutorial. Moscow: Izdatel'stvo Moskovskogo universiteta.

17. Constitution (fundamental law) of the USSR, 1977. (In Russ.).

18. Huntington, S. (2003). The Clash of Civilizations. Moscow: AST. (In Russ.).

19. Malkov, A. S. (2013). From World-system to World-organism. Bulletin of Moscow University. Series 27. Globalistics and geopolitics, 1, 76–84. (In Russ.).

20. Malkov, S. Yu. (2015). From World-system to World-organism. In L. E. Grinin, A. V. Korotaev (Eds.). History and mathematics: futurological and methodological aspects (pp. 57–70). Volgograd: Uchitel. (In Russ.).

21. Malkov, S. Yu. (2017). World dynamics patterns modeling. Computer Research and Modeling, 9(3), 419–432. (In Russ.). https://doi.org/10.20537/2076-7633-2017-9-3-419-432

22. Malkov, S. Yu., & Maksimov, A. A. (2018). Epochs of change: from the past to the future. Informatsionnye Voiny, 2(46), 16–23. (In Russ.).

23. Malkov, S. Yu. (2021). On the Forecast of World Dynamics in the 21st Century. Istoriya i Sovremennost, 4, 39–57. (In Russ.). https://doi.org/10.30884/iis/2021.04.03

24. Yakovets, Yu. V., Akaev, A. A., & Malkov, S. Yu. (2020). Theory and strategy of development of sustainable multipolar world order based on partnership of civilizations (Yalta peace – 2). In 2 Vol. Мoscow: MISK –INEHS. (In Russ.).

25. Malkov, S. Yu., & Maksimov, A. A. (2018). Contours of the coming world order. Istoriya i Sovremennost, 4(30), 3–29. (In Russ.).

26. Malkov, S. Yu. (2019). Russia in the context of the world dynamics. In M. Ch. Zalikhanov, S. A. Stepanov, G. R. Isakova (Eds.), Russia in the 21st century: global challenges, risks and solutions. Analysis. Expertise. Recommendations (pp. 55–74). Moscow: Izd-vo MNEHPU. (In Russ.).

27. Malkov, S. Yu., & Maksimov, A. A. (2020). Contemporary “epoch of change” and its risks. In G. G. Malinetskii, V. V. Ivanov, P. A. Vernik (Eds.). Modeling the digital future. Scientific approaches (pp. 245–252). Moscow: TEKHNOSFERA. (In Russ.).

28. Malkov, S. Yu., Davydova, O. I. (2021). Modernization as a global process: the experience of mathematical modeling. Computer Research and Modeling, 13(4), 859–873. (In Russ.). https://doi.org/10.20537/2076-7633-2021-13-4-859-873

29. Sadovnichii, V. A., Akaev, A. A., Il'in, I. V., Korotaev, A. V., & Malkov, S. Yu. (2022). Modeling and Forecasting Of Global Dynamics in the XXI Century. Bulletin of Moscow University. Series 27. “Global Studies and Geopolitics”, 1, 5–35. (In Russ.).

30. Malkov, S. Yu. (2022). Russia in the Context of the Global Crisis. Eurasian Integration: Economic, Law, Politics, 16(4), 11–25. (In Russ.). https://doi.org/10.22394/2073-2929-2022-04-11-25


Review

For citations:


Malkov S.Yu. Modeling of competitive interactions: basic regularities. Part 2. Russian Journal of Economics and Law. 2023;17(2):253-268. (In Russ.) https://doi.org/10.21202/2782-2923.2023.2.253-268. EDN: DSFPFX

Views: 277


ISSN 2782-2923 (Print)